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WHAT IS DAFS?
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Core Features

• Host and Callback state are 
saved/restored across fileserver restarts

• (Nearly) all I/O is now lock-less
– Namei linktable still requires file locking

• Volume salvages happen on-demand 
whenever corruption is detected

• Fast startup and shutdown
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Salvageserver

• Permits fileserver and volserver to 
schedule asynchronous volume salvage 
operations

• Maintains a priority queue of scheduled 
salvage jobs

• Dispatches jobs as workers become 
available

• Notifies fileserver of job success/failure
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Startup/Shutdown

• Fast startup
– now little more than a directory scan

• Fast shutdown
– Uses a multi-phased highly parallel 

shutdown algorithm
• Seldom-used volumes are continuously 

offlined by a garbage collector to reduce 
shutdown I/O overhead
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Want to know more?

• Please see my 2006 AFS BPW talk
• Send email to Andrew or I
• Read the AFSLore wiki page
• Read the updated server man pages
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WHY DEPLOY DAFS?

Deploying the OpenAFS Demand Attach File Server
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Performance

• Dramatically faster restart times
• Client cache state is no longer re-initialized 

following a server restart
– Eliminates post-restart InitCallBackState storms
– Eliminates post-restart FetchStatus storms

• Higher throughput due to lock-less I/O
• Reduced operator intervention due to 

automation of salvaging process
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Reliability

• Several metadata corruption modes have 
been eliminated
– DAFS detects the need to salvage a volume when 

it was owned by an ancillary process (e.g. 
volserver) at the time of crash

• Safer than “fast-restart” mode
– metadata corruption is detected, and automated 

attempt(s) are made to correct the inconsistencies, 
rather than serving data of unknown integrity
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Availability

• Salvages happen with the fileserver online
– Volumes in a consistent state are served 

immediately; those requiring a salvage do so in 
the background

• Demand attachment is synchronous; demand 
salvaging is asynchronous
– For demand salvage, VBUSY/VRESTARTING 

error codes are sent to client, thereby freeing 
precious fileserver threads during the latent 
operation
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Serviceability / Observability

• Bouncing servers without significant 
operational consequences is finally possible

• DAFS maintains significantly more granular 
statistics in the fileserver process
– various counters and last-event timestamps (e.g. volume 

operations, demand attaches, VLRU detaches, demand 
salvages, hash table lookups, disk header loads)

– They were necessary to support several DAFS self-tuning 
algorithms; are also available via fssync-debug for use in 
support of AFS plant analytics
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DEPLOYMENT ISSUES
(POTENTIAL PIT-FALLS)

Deploying the OpenAFS Demand Attach File Server

13



Bos Bnode Complications

• DAFS requires its own bnode type ‘dafs’
• Because of this complication, simple 

binary replacement is not a viable 
upgrade strategy
– Thus, DAFS server binaries have new 

names:
• dafileserver, davolserver, dasalvageserver, 

dasalvager

14



Host/CallBack State

• State has a 30-minute expiration timer
• If server protocol capabilities change across a 

restart, then the state must be discarded
– Currently done by manually deleting fsstate.dat
– Patch in-progress to make this automatic
– Won’t be required in the future; work underway to 

introduce a new capability exchange RPC 
(draft-tkeiser-afs3-capability-exchange-00)

15



Volume State

• DAFS introduces a sophisticated finite 
state machine for each volume

• The volserver RPC protocol (utilized by 
vos) is only capable of reporting a 
binary state for a volume (online/offline)
– Work is underway to fix this deficiency 

(draft-tkeiser-afs3-volser-tlv-03)
– Workaround: locally execute fssync-debug
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Salvaging

• Salvaging remains a relatively slow operation
– We (Deason, Meffie, Derrick, and I) have been 

working on this issue for several years; a threaded 
salvager is coming (hopefully 1.10 timeframe?)...

• Inode and DAFS are effectively incompatible
– Salvaging involves a full inode scan, which makes 

volume group-level salvages extremely inefficient
• vos listvol output no longer sufficient to verify  

volumes are ok following a server crash
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Volume Operations

• All volume operations (including salvages) 
may not begin until the Volume Group Cache 
(VGC) has been fully populated

• Volume operations which are expected to 
either be fast, or to fail, may now be highly 
latent due to demand salvage capability

18



DEPLOYING DAFS
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dafs bnode

• This new bnode takes four executables:
• dafileserver
• davolserver
• dasalvageserver
• dasalvager

• This permits operators to seamlessly switch 
between dafs and non-dafs servers
– with one important caveat: fsstate.dat consistency 

must be maintained manually; fix on the way...
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Volume Package Tunables

• -vhashsize <log2(hash table size)>
– Volume hash table size plays a significant role in 

fileserver performance (especially during startup)
• -vattachpar <number of threads>

– Controls (max) parallelism of startup and 
shutdown processes

• -unsafe-nosalvage
– Provide “fast-restart” semantics with DAFS
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VLRU (GC) Tunables

• -vlrudisable
– Disables the VLRU inactive volume detachment thread

• -vlruthresh <minutes>
– Inactivity timer for VLRU garbage collector
– Default: 120 minutes

• -vlruinterval <seconds>
– Determines periodicity of background offline batch jobs
– Default: 120 seconds

• -vlrumax <number of volumes>
– Sets maximum number of volumes to offline per batch job
– Default: 8 volumes
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Fileserver State Tunables

• -fs-state-dont-save
– Turns off the saving of fileserver (host/callback) 

state during shutdown
• -fs-state-dont-restore

– Turns off the restoration of fileserver state during 
startup

• -fs-state-verify <none|save|restore|both>
– Control whether/when state dump integrity 

checking occurs
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DEBUGGING DAFS
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Debugging Utilities

• state_analyzer:
– debug fsstate.dat fileserver state dumps

• dafssync-debug:
– communicate with the fileserver via the 

FSSYNC protocol
• dasalvsync-debug:

– communicate with the salvageserver via 
the SALVSYNC protocol
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state_analyzer

• Provides a means to query/analyze the 
hosts, authenticated users, files (by fid), 
and call backs

• Interactive debugger-like command line 
interface
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fssync-debug

• This is a deep internal tool, however 
there are a few subcommands that are 
benign
– “query” (dumps the state of a volume)

• fssync-debug query <volume id> <partition>
– “header” (dumps the cached volume disk 

header, if any)
• fssync-debug header <volume id> <partition>
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fssync-debug

– “vgcquery” (queries the volume group 
cache)

• fssync-debug vgcquery <volume id> <partition>
– “vnode” (dumps the state of a vnode)

• fssync-debug vnode <volume id> <vnode id> 
<uniquifier> <partition>

– “volop” (dumps the state of any running 
volume operation)

• fssync-debug volop <volume id> <partition>
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fssync-debug

– “stats pkg” (queries global volume package 
statistics)

• fssync-debug stats pkg
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FUTURE DIRECTIONS

Deploying the OpenAFS Demand Attach File Server
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Potential DAFS Futures

• Threaded salvageserver (in-progress)
– Leverage I/O parallelism by salvaging 

multiple vnodes at once
– Potentially eliminate fork() overhead

• Skip marking RO volumes in-use during 
demand attachment
– Reduction in attachment I/O overhead

• Live partition attachment/detachment
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CONCLUSIONS

Deploying the OpenAFS Demand Attach File Server
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Conclusions

• DAFS provides a significant suite of 
improvements to the OpenAFS
fileserver

• Deployment is relatively straightforward, 
so long as the migration issues are 
understood, and appropriate procedures 
are followed
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QUESTIONS?

Deploying the OpenAFS Demand Attach File Server
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THANKS!

Deploying the OpenAFS Demand Attach File Server
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