
Deploying DAFS

Tom Keiser
Sine Nomine Associates

1

The OpenAFS Demand Attach File Server

Agenda

• What is DAFS?
• Why should I deploy DAFS?
• What are the deployment issues?
• Deploying DAFS
• Debugging DAFS-specific issues
• Future Directions
• Conclusions

2

WHAT IS DAFS?

Deploying the OpenAFS Demand Attach File Server

3

Core Features

• Host and Callback state are
saved/restored across fileserver restarts

• (Nearly) all I/O is now lock-less
– Namei linktable still requires file locking

• Volume salvages happen on-demand
whenever corruption is detected

• Fast startup and shutdown

4

Salvageserver

• Permits fileserver and volserver to
schedule asynchronous volume salvage
operations

• Maintains a priority queue of scheduled
salvage jobs

• Dispatches jobs as workers become
available

• Notifies fileserver of job success/failure
5

Startup/Shutdown

• Fast startup
– now little more than a directory scan

• Fast shutdown
– Uses a multi-phased highly parallel

shutdown algorithm
• Seldom-used volumes are continuously

offlined by a garbage collector to reduce
shutdown I/O overhead

6

Want to know more?

• Please see my 2006 AFS BPW talk
• Send email to Andrew or I
• Read the AFSLore wiki page
• Read the updated server man pages

7

WHY DEPLOY DAFS?

Deploying the OpenAFS Demand Attach File Server

8

Performance

• Dramatically faster restart times
• Client cache state is no longer re-initialized

following a server restart
– Eliminates post-restart InitCallBackState storms
– Eliminates post-restart FetchStatus storms

• Higher throughput due to lock-less I/O
• Reduced operator intervention due to

automation of salvaging process

9

Reliability

• Several metadata corruption modes have
been eliminated
– DAFS detects the need to salvage a volume when

it was owned by an ancillary process (e.g.
volserver) at the time of crash

• Safer than “fast-restart” mode
– metadata corruption is detected, and automated

attempt(s) are made to correct the inconsistencies,
rather than serving data of unknown integrity

10

Availability

• Salvages happen with the fileserver online
– Volumes in a consistent state are served

immediately; those requiring a salvage do so in
the background

• Demand attachment is synchronous; demand
salvaging is asynchronous
– For demand salvage, VBUSY/VRESTARTING

error codes are sent to client, thereby freeing
precious fileserver threads during the latent
operation

11

Serviceability / Observability

• Bouncing servers without significant
operational consequences is finally possible

• DAFS maintains significantly more granular
statistics in the fileserver process
– various counters and last-event timestamps (e.g. volume

operations, demand attaches, VLRU detaches, demand
salvages, hash table lookups, disk header loads)

– They were necessary to support several DAFS self-tuning
algorithms; are also available via fssync-debug for use in
support of AFS plant analytics

12

DEPLOYMENT ISSUES
(POTENTIAL PIT-FALLS)

Deploying the OpenAFS Demand Attach File Server

13

Bos Bnode Complications

• DAFS requires its own bnode type ‘dafs’
• Because of this complication, simple

binary replacement is not a viable
upgrade strategy
– Thus, DAFS server binaries have new

names:
• dafileserver, davolserver, dasalvageserver,

dasalvager

14

Host/CallBack State

• State has a 30-minute expiration timer
• If server protocol capabilities change across a

restart, then the state must be discarded
– Currently done by manually deleting fsstate.dat
– Patch in-progress to make this automatic
– Won’t be required in the future; work underway to

introduce a new capability exchange RPC
(draft-tkeiser-afs3-capability-exchange-00)

15

Volume State

• DAFS introduces a sophisticated finite
state machine for each volume

• The volserver RPC protocol (utilized by
vos) is only capable of reporting a
binary state for a volume (online/offline)
– Work is underway to fix this deficiency

(draft-tkeiser-afs3-volser-tlv-03)
– Workaround: locally execute fssync-debug

16

Salvaging

• Salvaging remains a relatively slow operation
– We (Deason, Meffie, Derrick, and I) have been

working on this issue for several years; a threaded
salvager is coming (hopefully 1.10 timeframe?)...

• Inode and DAFS are effectively incompatible
– Salvaging involves a full inode scan, which makes

volume group-level salvages extremely inefficient
• vos listvol output no longer sufficient to verify

volumes are ok following a server crash

17

Volume Operations

• All volume operations (including salvages)
may not begin until the Volume Group Cache
(VGC) has been fully populated

• Volume operations which are expected to
either be fast, or to fail, may now be highly
latent due to demand salvage capability

18

DEPLOYING DAFS

Deploying the OpenAFS Demand Attach File Server

19

dafs bnode

• This new bnode takes four executables:
• dafileserver
• davolserver
• dasalvageserver
• dasalvager

• This permits operators to seamlessly switch
between dafs and non-dafs servers
– with one important caveat: fsstate.dat consistency

must be maintained manually; fix on the way...

20

Volume Package Tunables

• -vhashsize <log2(hash table size)>
– Volume hash table size plays a significant role in

fileserver performance (especially during startup)
• -vattachpar <number of threads>

– Controls (max) parallelism of startup and
shutdown processes

• -unsafe-nosalvage
– Provide “fast-restart” semantics with DAFS

21

VLRU (GC) Tunables

• -vlrudisable
– Disables the VLRU inactive volume detachment thread

• -vlruthresh <minutes>
– Inactivity timer for VLRU garbage collector
– Default: 120 minutes

• -vlruinterval <seconds>
– Determines periodicity of background offline batch jobs
– Default: 120 seconds

• -vlrumax <number of volumes>
– Sets maximum number of volumes to offline per batch job
– Default: 8 volumes

22

Fileserver State Tunables

• -fs-state-dont-save
– Turns off the saving of fileserver (host/callback)

state during shutdown
• -fs-state-dont-restore

– Turns off the restoration of fileserver state during
startup

• -fs-state-verify <none|save|restore|both>
– Control whether/when state dump integrity

checking occurs

23

DEBUGGING DAFS

Deploying the OpenAFS Demand Attach File Server

24

Debugging Utilities

• state_analyzer:
– debug fsstate.dat fileserver state dumps

• dafssync-debug:
– communicate with the fileserver via the

FSSYNC protocol
• dasalvsync-debug:

– communicate with the salvageserver via
the SALVSYNC protocol

25

state_analyzer

• Provides a means to query/analyze the
hosts, authenticated users, files (by fid),
and call backs

• Interactive debugger-like command line
interface

26

fssync-debug

• This is a deep internal tool, however
there are a few subcommands that are
benign
– “query” (dumps the state of a volume)

• fssync-debug query <volume id> <partition>
– “header” (dumps the cached volume disk

header, if any)
• fssync-debug header <volume id> <partition>

27

fssync-debug

– “vgcquery” (queries the volume group
cache)

• fssync-debug vgcquery <volume id> <partition>
– “vnode” (dumps the state of a vnode)

• fssync-debug vnode <volume id> <vnode id>
<uniquifier> <partition>

– “volop” (dumps the state of any running
volume operation)

• fssync-debug volop <volume id> <partition>

28

fssync-debug

– “stats pkg” (queries global volume package
statistics)

• fssync-debug stats pkg

29

FUTURE DIRECTIONS

Deploying the OpenAFS Demand Attach File Server

30

Potential DAFS Futures

• Threaded salvageserver (in-progress)
– Leverage I/O parallelism by salvaging

multiple vnodes at once
– Potentially eliminate fork() overhead

• Skip marking RO volumes in-use during
demand attachment
– Reduction in attachment I/O overhead

• Live partition attachment/detachment
31

CONCLUSIONS

Deploying the OpenAFS Demand Attach File Server

32

Conclusions

• DAFS provides a significant suite of
improvements to the OpenAFS
fileserver

• Deployment is relatively straightforward,
so long as the migration issues are
understood, and appropriate procedures
are followed

33

QUESTIONS?

Deploying the OpenAFS Demand Attach File Server

34

THANKS!

Deploying the OpenAFS Demand Attach File Server
35

Tom Keiser
Sine Nomine Associates
tkeiser@sinenomine.net

DAFS Development Contacts:

Michael Meffie
Sine Nomine Associates
mmefie@sinenomine.net

Andrew Deason
Sine Nomine Associates

adeason@sinenomine.net

	Deploying DAFS
	Agenda
	What is DAFS?
	Core Features
	Salvageserver
	Startup/Shutdown
	Want to know more?
	Why Deploy DAFS?
	Performance
	Reliability
	Availability
	Serviceability / Observability
	Deployment Issues�(Potential pit-falls)
	Bos Bnode Complications
	Host/CallBack State
	Volume State
	Salvaging
	Volume Operations
	Deploying DAFS
	dafs bnode
	Volume Package Tunables
	VLRU (GC) Tunables
	Fileserver State Tunables
	Debugging DAFS
	Debugging Utilities
	state_analyzer
	fssync-debug
	fssync-debug
	fssync-debug
	Future Directions
	Potential DAFS Futures
	Conclusions
	Conclusions
	Questions?
	Thanks!

